
Contents

List of Tables xiii

List of Figures xv

Preface xvii

Preface to the Original Book xix

1 INTRODUCTION 1

1.1 Overview of the Book 3
1.2 How to Use This Book 7
1.3 Introduction to R and the tidyverse 8

1.3.1 Arithmetic Operations: R as a Calculator 9
1.3.2 R Scripts 10
1.3.3 Loading Packages 11
1.3.4 Objects 13
1.3.5 Vectors 15
1.3.6 Functions 17
1.3.7 Data Files: Loading and Subsetting 20
1.3.8 Adding Variables 27
1.3.9 Data Frames: Summarizing 28
1.3.10 Saving Objects 30
1.3.11 Loading Data in Other Formats 31
1.3.12 Programming and Learning Tips 32

1.4 Summary 33
1.5 Exercises 34

1.5.1 Bias in Self-Reported Turnout 34
1.5.2 Understanding World Population Dynamics 35

2 CAUSALITY 38

2.1 Racial Discrimination in the Labor Market 38
2.2 Subsetting Data in R 45

2.2.1 Logical Values and Operators 46
2.2.2 Relational Operators 48
2.2.3 Subsetting 49

viii Contents

2.2.4 Simple Conditional Statements 53
2.2.5 Factor Variables 53

2.3 Causal Effects and the Counterfactual 56
2.4 Randomized Controlled Trials 58

2.4.1 The Role of Randomization 59
2.4.2 Social Pressure and Voter Turnout 60

2.5 Observational Studies 65
2.5.1 Minimum Wage and Unemployment 65
2.5.2 Confounding Bias 68
2.5.3 Before-and-After and Difference-in-Differences Designs 71

2.6 Descriptive Statistics for a Single Variable 75
2.6.1 Quantiles 75
2.6.2 Standard Deviation 78

2.7 Summary 81
2.8 Exercises 82

2.8.1 Efficacy of Small Class Size in Early Education 82
2.8.2 Changing Minds on Gay Marriage 84
2.8.3 Success of Leader Assassination as a Natural Experiment 85

3 MEASUREMENT 88

3.1 Measuring Civilian Victimization during Wartime 88
3.2 Handling Missing Data in R 93
3.3 Visualizing the Univariate Distribution 96

3.3.1 Bar Plot 97
3.3.2 Histogram 100
3.3.3 Box Plot 103
3.3.4 Printing and Saving Graphs 105

3.4 Survey Sampling 106
3.4.1 The Role of Randomization 107
3.4.2 Nonresponse and Other Sources of Bias 111

3.5 Measuring Political Polarization 114
3.6 Summarizing Bivariate Relationships 116

3.6.1 Scatter Plot 116
3.6.2 Correlation 120

3.7 Quantile–Quantile Plot 124
3.8 Clustering 128

3.8.1 Matrix in R 128
3.8.2 List in R 130
3.8.3 The k-Means Algorithm 131

3.9 Summary 136
3.10 Exercises 137

3.10.1 Changing Minds on Gay Marriage: Revisited 137
3.10.2 Political Efficacy in China and Mexico 139
3.10.3 Voting in the United Nations General Assembly 141

Contents ix

4 PREDICTION 144

4.1 Predicting Election Outcomes 144
4.1.1 Loops in R 145
4.1.2 General Conditional Statements in R 148
4.1.3 Poll Predictions 152

4.2 Linear Regression 162
4.2.1 Facial Appearance and Election Outcomes 162
4.2.2 Correlation and Scatter Plots 165
4.2.3 Least Squares 166
4.2.4 Regression towards the Mean 173
4.2.5 Merging Data Sets in R 174
4.2.6 Model Fit 181

4.3 Regression and Causation 188
4.4 Randomized Experiments 188

4.4.1 Regression with Multiple Predictors 191
4.4.2 Heterogeneous Treatment Effects 197
4.4.3 Regression Discontinuity Design 203

4.5 Summary 209
4.6 Exercises 209

4.6.1 Prediction Based on Betting Markets 209
4.6.2 Election and Conditional Cash Transfer Program in Mexico 211
4.6.3 Government Transfer and Poverty Reduction in Brazil 214

5 DISCOVERY 216

5.1 Textual Data 216
5.1.1 The Disputed Authorship of The Federalist Papers 216
5.1.2 Document-Term Matrix 221
5.1.3 Topic Discovery 223
5.1.4 Authorship Prediction 232
5.1.5 Cross-Validation 235

5.2 Network Data 238
5.2.1 Marriage Network in Renaissance Florence 238
5.2.2 Undirected Graph and Centrality Measures 240
5.2.3 Twitter-Following Network 245
5.2.4 Directed Graph and Centrality 247

5.3 Spatial Data 255
5.3.1 The 1854 Cholera Outbreak in London 256
5.3.2 Spatial Data in R 258
5.3.3 US Presidential Elections 264
5.3.4 Expansion of Walmart 268
5.3.5 Animation in R 270

5.4 Summary 272
5.5 Exercises 273

5.5.1 Analyzing the Preambles of Constitutions 273
5.5.2 International Trade Network 275
5.5.3 Mapping US Presidential Election Results over Time 277

x Contents

6 PROBABILITY 279

6.1 Probability 279
6.1.1 Frequentist versus Bayesian 279
6.1.2 Definition and Axioms 281
6.1.3 Permutations 284
6.1.4 Sampling with and without Replacement 287
6.1.5 Combinations 289

6.2 Conditional Probability 291
6.2.1 Conditional, Marginal, and Joint Probabilities 291
6.2.2 Independence 301
6.2.3 Bayes’ Rule 307
6.2.4 Predicting Race Using Surname and Residence Location 309

6.3 Random Variables and Probability Distributions 321
6.3.1 Random Variables 321
6.3.2 Bernoulli and Uniform Distributions 321
6.3.3 Binomial Distribution 325
6.3.4 Normal Distribution 328
6.3.5 Expectation and Variance 335
6.3.6 Predicting Election Outcomes with Uncertainty 339

6.4 Large Sample Theorems 342
6.4.1 The Law of Large Numbers 342
6.4.2 The Central Limit Theorem 345

6.5 Summary 350
6.6 Exercises 350

6.6.1 The Mathematics of Enigma 350
6.6.2 A Probability Model for Betting Market Election Prediction 352
6.6.3 Election Fraud in Russia 354

7 UNCERTAINTY 357

7.1 Estimation 357
7.1.1 Unbiasedness and Consistency 358
7.1.2 Standard Error 366
7.1.3 Confidence Interval 371
7.1.4 Margin of Error and Sample Size Calculation in Polls 378
7.1.5 Analysis of Randomized Controlled Trials 383
7.1.6 Analysis Based on Student’s t-Distribution 386

7.2 Hypothesis Testing 390
7.2.1 Tea-Tasting Experiment 390
7.2.2 The General Framework 394
7.2.3 One-Sample Tests 397
7.2.4 Two-Sample Tests 404
7.2.5 Pitfalls of Hypothesis Testing 409
7.2.6 Power Analysis 411

7.3 Linear Regression Model with Uncertainty 418
7.3.1 Linear Regression as a Generative Model 418
7.3.2 Unbiasedness of Estimated Coefficients 423

Contents xi

7.3.3 Standard Errors of Estimated Coefficients 426
7.3.4 Inference about Coefficients 428
7.3.5 Inference about Predictions 432

7.4 Summary 439
7.5 Exercises 439

7.5.1 Sex Ratio and the Price of Agricultural Crops in China 439
7.5.2 Filedrawer and Publication Bias in Academic Research 441
7.5.3 Analysis of the 1933 German Election during the Weimar Republic 443

8 NEXT 446

General Index 449

R Index 455

Chapter 1

Introduction

In God we trust; all others must bring data.
—William Edwards Deming

Quantitative social science is an interdisciplinary field encompassing a large number of dis-
ciplines, including economics, education, political science, public policy, psychology, and
sociology. In quantitative social science research, scholars analyze data to understand and
solve problems about society and human behavior. Such research projects range from the
examination of racial discrimination in the labor market to the impact evaluation of new
curricula on students’ educational achievements, and from the prediction of election out-
comes to the analysis of social media usage. A similar data-driven approach has been taken
up in other neighboring fields such as health, law, journalism, linguistics, and even literature.
Because social scientists directly investigate a wide range of real-world issues, the results of
their research have enormous potential to directly influence individual members of society,
government policies, and business practices.

Over the last couple of decades, quantitative social science has flourished in a variety of
areas at an astonishing speed. The number of academic journal articles that present empirical
evidence fromdata analysis has soared. Outside of academia, many organizations—including
corporations, political campaigns, news media, and government agencies—increasingly
rely on data analysis in their decision-making processes. Two transformative technologi-
cal changes have driven this rapid growth of quantitative social science. First, the internet
has greatly facilitated the data revolution, a spike in the amount and diversity of available
data, through information sharing, making it possible for researchers and organizations to
disseminate numerous data sets in digital form. Second, the computational revolution, in
terms of both software and hardware, means that essentially anyone can conduct data analysis
using their personal computer and favorite data analysis software, without needing to access
expensive computational facilities.

As a direct consequence of these technological changes, the sheer volume of data available
to quantitative social scientists has rapidly grown. In the past, most researchers relied upon
data published by governmental agencies (e.g., censuses, election outcomes, and economic
indicators) as well as a small number of data sets collected by groups of researchers (e.g., sur-
vey data from national election studies and hand-coded data sets about war occurrence and
democratic institutions). These data sets still play an important role in empirical analysis.

2 Chapter 1: Introduction

However, the wide variety of new data has significantly expanded the horizon of quantitative
social science research. Researchers are now designing and conducting randomized experi-
ments and surveys on their own. Under pressure to increase transparency and accountability,
government agencies are making more data publicly available online. For example, in the
United States, anyone can download detailed data on campaign contributions and lobby-
ing activities to their personal computers. In Nordic countries like Sweden, a wide range of
registers, including income, tax, education, health, and workplace, are used for academic
research.

New data sets have emerged across diverse areas. For example, detailed data about con-
sumer transactions are available through electronic purchasing records. International trade
data are now collected at the product level between many pairs of countries over several
decades. Militaries have also contributed to the data revolution. During the recent war in
Afghanistan, theUnited States and international forces gathered data on the geolocation, tim-
ing, and types of insurgent attacks and conducted data analysis to guide counterinsurgency
strategy. Similarly, governmental agencies and nongovernmental organizations collected data
on civilian casualties from the war. Political campaigns use data analysis to devise voter
mobilization strategies by targeting certain types of voters with carefully selected messages.

These data sets also come in varying forms. Quantitative social scientists are now analyzing
digitized texts as data, including legislative bills, newspaper articles, and speeches. The avail-
ability of social media data through websites, blogs, tweets, SMS messaging, and Facebook
has enabled social scientists to explore how people interact with one another in the online
sphere. Geographical information system (GIS) data sets are also widespread, enabling, for
example, researchers to analyze the legislative redistricting process and its outcomes. Others
have used satellite imagery data to measure the level of electrification in rural areas of devel-
oping countries. Images, sounds, and even videos can now be analyzed using quantitative
methods to answer social science questions.

Together with the revolution of information technology, the availability of such abundant
and diverse data means that anyone, from academics to practitioners, from business ana-
lysts to policy makers, and from students to faculty, can make data-driven discoveries. In
the past, only statisticians and other specialized professionals conducted data analysis. Now,
everyone can turn on their personal computer, download data from the internet, and ana-
lyze them using their favorite software. This has led to increased demands for accountability
to demonstrate policy effectiveness. In order to secure funding and increase legitimacy, for
example, nongovernmental organizations and governmental agenciesmust now demonstrate
the efficacy of their policies and programs through rigorous evaluation.

This shift towards greater transparency and data-driven discovery requires that students
in the social sciences learn how to analyze data, interpret the results, and effectively com-
municate their empirical findings. Traditionally, introductory statistics courses focused on
teaching students basic statistical concepts by having them conduct straightforward calcula-
tions with paper and pencil or, at best, a scientific calculator. Although these concepts are still
important and covered in this book, in the current day and age this traditional approach can-
not meet the demands of society. It is simply not sufficient to achieve “statistical literacy” by
learning about common statistical concepts and methods. Instead, all students in the social
sciences should acquire basic data analysis skills so that they can exploit ample opportunities
to learn from data and make contributions to society through data-driven discovery.

The belief that everyone should be able to analyze data is themainmotivation for the writ-
ing of this book. The book introduces three elements of data analysis required for quantitative

1.1 Overview of the Book 3

social science research: research contexts, programming techniques, and statistical methods.
Any of these elements in isolation is insufficient. Without research contexts, we cannot assess
the credibility of assumptions required for data analysis and will not be able to understand
what the empirical findings imply. Without programming techniques, we will not be able to
analyze data and answer research questions. Without the guidance of statistical principles,
we cannot distinguish systematic patterns, known as signals, from idiosyncratic ones, known
as noise, possibly leading to invalid inference. Here, inference refers to drawing conclusions
about unknown quantities based on observed data. This book demonstrates the power of data
analysis by combining these three elements.

1.1 Overview of the Book

This book is written for anyone who wishes to learn data analysis and statistics for the
first time. The target audience includes researchers and undergraduate and graduate students
in social science and other fields, as well as practitioners and even ambitious high-school
students. The book has no prerequisite other than some elementary algebra. In particular,
readers do not have to possess knowledge of calculus or probability. No programming expe-
rience is necessary, though it can certainly be helpful. The book is also appropriate for those
who have taken a traditional “paper-and-pencil” introductory statistics course where little
data analysis is taught. Through this book, these students will discover the excitement that
data analysis brings. Those who want to learn R programming might also find this book
useful, although here the emphasis is on how to apply R to quantitative social science research.

As mentioned above, the unique feature of this book is the presentation of programming
techniques and statistical concepts simultaneously through analysis of data sets taken directly
frompublished quantitative social science research. The goal is to demonstrate how social sci-
entists use data analysis to answer important questions about problems of society and human
behavior. At the same time, users of the book will learn fundamental statistical concepts and
basic programming skills. Most importantly, readers will gain experience with data analysis
by examining approximately forty data sets.

The book consists of eight chapters. The current introductory chapter explains how to best
utilize the book and presents a brief introduction to R, a popular open-source statistical pro-
gramming environment. R is freely available for download and runs onMacintosh,Windows,
and Linux computers. Readers are strongly encouraged to use RStudio, another freely avail-
able software package that has numerous features to make data analysis easier. This chapter
endswith two exercises, which are designed to have readers practice elementary R functional-
ities using data sets from published social science research. All code and data sets used in this
book are freely available for download at https://github.com/kosukeimai/qss. This website
also provides other useful materials, such as the review exercises for each chapter.

The original version of this textbook focused on the most basic syntax of R, which is often
referred to as “base R.” This book instead relies heavily on what is called the “tidyverse”
(specifically version 1.3.1 of the tidyverse).1 We will cover more on what that means as we
introduce R. However, it is worth noting now that there are oftenmany different ways to write
code in R that produces the same results. You can think of the tidyverse as being a dialect or

1Formore detail, see HadleyWickham et al. (2019) “Welcome to the tidyverse.” Journal of Open Source Software, vol. 4,
no. 43, p. 1686, https://doi.org/10.21105/joss.01686. We are deeply indebted to an earlier contribution by Jeffrey Arnold
(with additions from Nora Webb Williams and Calvin Garner), which is available at https://github.com/jrnold/qss-tidy.

4 Chapter 1: Introduction

specific syntax of R programming. It is another (sometimes more efficient or elegant) way of
asking for the same thing from R as base R. This book is not a complete introduction to the
tidyverse. We recommend R for Data Science by Hadley Wickham and Garrett Grolemond
for additional reference.

Chapter 2 introduces causality, which plays an essential role in social science research
whenever we wish to find out whether a particular policy or program changes an outcome
of interest. Causality is notoriously difficult to study because we must infer counterfactual
outcomes that are not observable. For example, in order to understand the existence of racial
discrimination in the labor market, we need to know whether or not an African American
candidate who did not receive a job offer would have done so if they were White. We will
analyze the data from awell-known experimental study inwhich researchers sent the resumes
of fictitious job applicants to potential employers after randomly choosing the applicants’
names to sound either African American or White. Using this study as an application, the
chapter will explain how the randomization of treatment assignment enables researchers to
identify the average causal effect of the treatment.

In chapter 2, readers will also learn about causal inference in observational studies where
researchers do not have control over treatment assignment. The main application is a classic
study of the relationship between minimum wage and employment. The goal of the study
was to figure out the impact of increasing minimumwage on employment. Many economists
argue that a minimum wage increase can reduce employment because employers must pay
higher wages to their workers and are therefore made to hire fewer workers. Unfortunately,
the decision to increase the minimum wage is not random, instead subject to many fac-
tors, like economic growth, that are themselves associated with employment. Since these
factors influence which companies select themselves into the treatment group, a simple com-
parison between those who received treatment and those who did not can lead to biased
inference.

We introduce several strategies that attempt to reduce this selection bias in observational
studies. Despite the risk that we will inaccurately estimate treatment effects in observational
studies, their results are often easier to generalize than those obtained from randomized con-
trolled trials. Other examples in this chapter include field experiments concerning social
pressure in get-out-the-vote mobilization. In terms of R programming, chapter 2 covers
logical statements and subsetting. The exercises include a randomized experiment that inves-
tigates the impact of small class size in early education and an observational study about the
assassination of political leaders.

Chapter 3 introduces the fundamental concept ofmeasurement. Accurate measurement is
important for any data-driven discovery because bias in measurement can lead to incorrect
conclusions and misguided decisions. We begin by considering how to measure public opin-
ion through sample surveys. We analyze the data from a study in which researchers attempt
to measure the degree of support among Afghan citizens for international forces and the Tal-
iban insurgency during the war in Afghanistan. We explain the power of randomization in
survey sampling. Specifically, random sampling of respondents from a population allows us
to obtain a representative sample of this population. As a result, we can infer the opinion of an
entire population by analyzing one small representative sample. We also discuss the potential
biases of survey sampling. Nonresponses can compromise the representativeness of a sam-
ple. Misreporting poses a serious threat to inference, especially when respondents are asked
sensitive questions, such as whether they support the Taliban insurgency.

1.1 Overview of the Book 5

The second half of chapter 3 focuses on the measurement of latent or unobservable con-
cepts that play a key role in quantitative social science. Prominent examples of such concepts
include ability and ideology. In the chapter we study political ideology. We first describe a
model frequently used to infer ideological positions of legislators from roll call votes and
examine how the US Congress has polarized over time. We then introduce a basic cluster-
ing algorithm, k-means, that makes it possible for us to find groups of similar observations.
Applying this algorithm to the data, we find that in recent years, the ideological division
within Congress has been mainly characterized by the party line. In contrast, we find some
divisions within each party in earlier years. This chapter also introduces various measures
of the spread of data, including quantiles, standard deviation, and the Gini coefficient. In
terms of R programming, the chapter introduces various ways to visualize univariate and
bivariate data. The exercises include the reanalysis of a controversial same-sex marriage
experiment, which raises issues of academic integrity while illustrating methods covered in
the chapter.

Chapter 4 considers prediction. Predicting the occurrence of certain events is an essen-
tial component of policy- and decision-making processes. For example, the forecasting of
economic performance is critical for fiscal planning, and early warnings of civil unrest allow
foreign policymakers to act proactively. Themain application of this chapter is the prediction
of US presidential elections using preelection polls. We show that we can make a remarkably
accurate prediction by combiningmultiple polls in a straightforwardmanner. In addition, we
analyze the data from a psychological experiment in which subjects are shown the facial pic-
tures of unknown political candidates and asked to rate their competence. The analysis yields
the surprising result that a quick facial impression can predict election outcomes. Through
this example, we introduce linear regression models, which are useful tools to predict the
values of one variable based on another variable. We describe the relationship between lin-
ear regression and correlation, and examine the phenomenon called “regression towards the
mean,” which is the origin of the term “regression.”

Chapter 4 also discusses when regression models can be used to estimate causal effects
rather than simply make predictions. Causal inference differs from standard prediction in
requiring the prediction of counterfactual, rather than observed, outcomes using the treat-
ment variable as the predictor. We analyze the data from a randomized natural experiment in
India where randomly selected villages reserved some of the seats in their village councils for
women. Exploiting this randomization, we investigate whether or not having female politi-
cians affects policy outcomes, especially concerning the policy issues female voters care about.
The chapter also introduces the regression discontinuity design for making causal inference
in observational studies. We investigate howmuch of British politicians’ accumulated wealth
is due to holding political office. We answer this question by comparing those who barely
won an election with those who narrowly lost it. The chapter introduces powerful but chal-
lenging R programming concepts, loops and conditional statements. The exercises at the end
of the chapter include an analysis of whether betting markets can precisely forecast election
outcomes.

Chapter 5 is about the discovery of patterns from data of various types. When analyzing
“big data,” we need some automated methods and visualization tools to identify consistent
patterns in the data. First, we analyze texts as data. Our primary application here is the
authorship prediction of The Federalist Papers, which formed the basis of the US Constitu-
tion. Some of the papers have known authors while others do not. We show that by analyzing

6 Chapter 1: Introduction

the frequencies of certainwords in the papers with known authorship, we can predict whether
Alexander Hamilton or James Madison authored each of the papers with unknown author-
ship. Second, we show how to analyze network data, which record information about the
relationships among units. Within marriage networks in Renaissance Florence, we quantify
the key role played by the Medici family. Various measures of centrality are introduced and
applied to a Twitter network, an example of social media data.

Finally, chapter 5 introduces geospatial data. We begin by discussing the classic spatial
data analysis conducted by John Snow to examine the cause of the 1854 cholera outbreak in
London. We then demonstrate how to visualize spatial data through the creation of maps,
using US election data as an example. For spatial–temporal data, we create a series of maps as
an animation in order to visually characterize change in spatial patterns over time. Thus, the
chapter applies various data visualization techniques using several specialized R packages.

Chapter 6 shifts the focus from data analysis to probability, a unified mathematical model
of uncertainty. While earlier chapters focus on how to estimate parameters and make predic-
tions, they do not discuss the level of uncertainty in empirical findings, a topic that chapter
7 introduces. Probability is important because it lays a foundation for statistical inference,
the goal of which is to quantify inferential uncertainty. We begin by discussing the question
of how to interpret probability from frequentist and Bayesian perspectives. We then provide
mathematical definitions of probability and conditional probability, and we introduce several
fundamental rules of probability. One such rule is Bayes’ rule.We show howwe can use Bayes’
rule to accurately predict individual ethnicity using surname and residence location when no
survey data are available.

This chapter also introduces the important concepts of random variables and probability
distributions. We use these tools to add a measure of uncertainty to the election predictions
we produced using preelection polls in chapter 4. Another exercise adds uncertainty to the
forecasts of election outcomes based on bettingmarket data. Finally, chapter 6 introduces two
fundamental theorems of probability, the law of large numbers and the central limit theorem.
These two theorems are widely applicable and help characterize how our estimates behave as
sample size increases and over repeated sampling. The last set of exercises in this chapter are
about the German cryptography machine from World War II, Enigma, and the detection of
election fraud in Russia.

Chapter 7 discusses how to quantify the uncertainty of our estimates and predictions. In
earlier chapters, we introduced various data analysis methods to find patterns in data. Build-
ing off the groundwork laid in chapter 6, chapter 7 thoroughly explains how certainwe should
be about such patterns. This chapter shows how to distinguish signals from noise through
the computation of standard errors and confidence intervals, as well as hypothesis testing. In
other words, the chapter is concernedwith statistical inference. Our examples are drawn from
earlier chapters and we focus on measuring the uncertainty of these previously computed
estimates. They include the analysis of preelection polls, randomized experiments concern-
ing the effects of class size in early education on students’ performance, and an observational
study assessing the effects of a minimum wage increase on employment. When discussing
statistical hypothesis tests, we also draw attention to the dangers of multiple testing and pub-
lication bias. Finally, we discuss how to quantify the level of uncertainty about the estimates
derived from the linear regression model. We revisit the randomized natural experiment of
female politicians in India and the regression discontinuity design for estimating the amount
of wealth British politicians are able to accumulate by holding political office.

1.2 How to Use This Book 7

The final chapter concludes by briefly describing the next steps readers might take upon
completion of this book. The chapter also discusses the role of data analysis in quantitative
social science research.

1.2 How to Use This Book

In this section we explain how to use this book. The book is based on the following
principle:

One can learn data analysis only by doing, not by reading.

The book is not just for reading. Therefore, the emphasis must be placed on gaining expe-
rience in analyzing data. This is best accomplished by trying out the code in the book
on one’s own, playing with it, and working on various exercises that appear at the end of
each chapter. All code and data sets used in the book are freely available for download at
https://github.com/kosukeimai/qss/.

The book is cumulative. Materials that appear later in the book assume that readers are
already familiar with most of the materials covered in earlier parts of the book. Hence, in
general, it is not a good idea to skip chapters. The exception is chapter 5, “Discovery,” the
contents of which are not used in subsequent chapters. Nevertheless, this chapter contains
some of the most interesting data analysis examples of the book and readers are encouraged
to study it.

The book can be used for course instruction in a variety of ways. In a traditional introduc-
tory statistics course one can assign the book, or parts of it, as supplementary reading that
provides data analysis exercises. In the authors’ experience, however, the book is best utilized
in a data analysis course where an instructor spends less time on lecturing to students and
instead works interactively with students on data analysis exercises in the classroom. In such
a course, a relevant portion of the book is assigned prior to each class. In the classroom, the
instructor reviews newmethodological and programming concepts and then applies them to
one of the exercises from the book or any other similar application of their choice. Through-
out this process, the instructor can discuss the exercise interactively with students, perhaps
using the Socratic method, until the class collectively arrives at a solution. After such a class-
room discussion, it would be ideal to follow up with a computer lab session in which a small
number of students, together with an instructor, work on another exercise.

This teaching format is consistent with the “particular general particular” principle.2 This
principle states that an instructor should first introduce a particular example to illustrate a
new concept, then provide a general treatment of it, and finally apply it to another particular
example. The reading assignment introduces a particular example and a general discussion of
new concepts to students. The classroom discussion allows the instructor to provide another
general treatment of these concepts and then, together with students, apply them to another
example. This is an effective teaching strategy that engages students with active learning and
builds their ability to conduct data analysis in social science research. Finally, the instruc-
tor can assign another application as a problem set to assess whether students mastered the

2Frederick Mosteller (1980) “Classroom and platform performance.” American Statistician, vol. 34, no. 1 (February),
pp. 11–17.

8 Chapter 1: Introduction

materials. To facilitate this, for each chapter, instructors can obtain, upon request, access to
additional exercises and their solutions at a private repository.

In terms of the materials to cover, an example of the course outline for a 15-week
semester is given below. We assume that there are approximately two hours of lectures and
one hour of computer lab each week. Having hands-on computer lab sessions with a small
number of students, in which they learn how to analyze data, is essential:

• Week 1: Introduction (chapter 1)
• Weeks 2–3: Causality (chapter 2)
• Weeks 4–5: Measurement (chapter 3)
• Weeks 6–7: Prediction (chapter 4)
• Weeks 8–9: Discovery (chapter 5)
• Weeks 10–12: Probability (chapter 6)
• Weeks 13–15: Uncertainty (chapter 7)

For a shorter course, there are at least two ways to reduce the materials. One option is
to focus on the aspects of “data analysis” and omit statistical inference. Specifically, from
the above outline, we can remove chapter 6, “Probability,” and chapter 7, “Uncertainty.” An
alternative approach is to skip chapter 5, “Discovery,” which covers the analysis of textual,
network, and spatial data, and include the chapters on probability and uncertainty.

1.3 Introduction to R and the tidyverse

This section provides a brief, self-contained introduction to R that is a prerequisite for the
remainder of this book. R is an open-source statistical programming environment, which
means that anyone can download it for free, examine source code, and make their own con-
tributions. R is powerful and flexible, enabling us to handle a variety of data sets and create
appealing graphics. For this reason, it is widely used in academia and industry. TheNew York
Times described R as3

a popular programming language used by a growing number of data analysts inside
corporations and academia. It is becoming their lingua franca . . .whether being used
to set ad prices, find new drugs more quickly or fine-tune financial models. Com-
panies as diverse as Google, Pfizer, Merck, Bank of America, the InterContinental
Hotels Group and Shell use it. . . .

“The great beauty of R is that you can modify it to do all sorts of things,” said Hal
Varian, chief economist at Google. “And you have a lot of prepackaged stuff that’s
already available, so you’re standing on the shoulders of giants.”

To obtain R, go to https://cran.r-project.org/ (The Comprehensive R Archive Network or
CRAN), select the link that matches your operating system, and then follow the installation
instructions. We used version 4.0.2 of R when writing this textbook.

While a powerful tool for data analysis, R’s main cost from a practical viewpoint is that it
must be learned as a programming language. This means that we must master various syn-
tax and rules of computer programming. Learning computer programming is like becoming

3Ashlee Vance (2009) “Data Analysts Captivated by R’s Power.” New York Times, January 6.

1.3 Introduction to R and the tidyverse 9

Figure 1.1. Screenshot of RStudio. The left window shows the R console where R commands
can be entered. The upper-right window lists R objects once they are created and a history of
executed R commands. Finally, the lower-right window enables us to view plots, data sets, files
and subdirectories in the working directory, R packages, and help pages.

proficient in a foreign language. It requires a lot of practice and patience, and the learning
process may be frustrating. Through numerous data analysis exercises, this book will teach
you the basics of statistical programming, which then will allow you to conduct data anal-
ysis on your own. The core principle of the book is that we can learn data analysis only by
analyzing data.

Unless you have prior programming experience (or have a preference for another text
editor such as Emacs), we recommend that you use RStudio. RStudio is an open-source and
free program that greatly facilitates the use of R. For example, we wrote this entire book
in RStudio using bookdown.4 RStudio gives users a text editor where we write programs, a
graph viewerwhich displays graphics wemake, theR consolewherewe execute our programs,
a help section, and many other features. It may look complicated at first, but RStudio should
make learning how to use R much easier. To obtain RStudio, go to http://www.rstudio.com/
and follow the download and installation instructions. Figure 1.1 shows a screenshot of
RStudio.

In the remainder of this section we cover five main topics: (1) using R as a calculator, (2)
writing R scripts, (3) loading packages, (4) creating and manipulating various objects in R,
and (5) loading, subsetting, adding variables to, and summarizing data sets in R.

1.3.1 ARITHMETIC OPERATIONS: R AS A CALCULATOR
We begin by using R as a calculator with standard arithmetic operators. In the R console

(the left panel in RStudio, with a > and a cursor; see figure 1.1), we can type in, for example,
5 + 3, then hit Enter on our keyboard.

4Yihui Xie (2016) bookdown: Authoring Books and Technical Documents with R Markdown. Chapman and Hall/CRC.

10 Chapter 1: Introduction

5 + 3

[1] 8

R ignores spaces, and so typing 5+3 will return the identical result to 5 + 3. However, we
added a space before and after the operator + to make it easier to read. As this example
illustrates, in this book, R commands will be displayed, followed by the outputs they would
produce if entered in theR console. These outputs aremarked by ## to distinguish them from
the R commands that produced them. You will not see the ## in your R console, you will just
see the output (8, in this case). Finally, in this example, [1] indicates that the output is the
first element of a vector of length 1 (we will discuss vectors in section 1.3.5). It is important for
readers to try these examples on their own. Remember that we can only learn programming
by doing! Let’s try some additional examples.

5 - 3

[1] 2

5 / 3

[1] 1.666667

5 ˆ 3

[1] 125

5 * (10 - 3)

[1] 35

sqrt(4)

[1] 2

The final expression is an example of a so-called function, which takes an input (ormultiple
inputs) and produces an output. Here, the function sqrt() takes a nonnegative number and
returns its square root. As discussed in section 1.3.6, R has numerous other functions, and
users can even make their own functions.

1.3.2 R SCRIPTS
You have now run your first commands in R! If you scroll up in the console, you will see

a record of the commands you entered and the output. However, if you close RStudio and
restart it, the console will start again clean. To save a record of our commands, we can use an
R script. An R script is a text file with the file extension (ending) of .R. In RStudio, you can
start a new script using the dropdown menu File > New File > R Script. There
are at least two other ways to start a new R script in RStudio—see if you can find them.

Try out your new R script by typing in the commands from the section above on arith-
metic operations into the script. Notice that if you hit Enter, you get a line break in the
script but no output. In order to have R actually evaluate the command you have written,

1.3 Introduction to R and the tidyverse 11

highlight it and press the Run button in RStudio. You should see the command and the out-
put appear in the console window. In RStudio, there are many ways to ask R to run R code
from a script. For example, you can use keyboard shortcuts, which is much faster than click-
ing the Run button. The shortcut Ctrl+Enter (on a Windows machine) or Cmd+Return
(on a Mac) will run the line of code your cursor is on. You can see all of the many RStudio

keyboard shortcuts by searching online or clicking on Tools > Keyboard Shortcuts
Help.

R scripts are a useful way to save R code. Go ahead and save the new script you have
just created. The next time you open RStudio, you can now open that script and rerun the
same R commands. R scripts can get very messy very quickly and there are many guides and
suggestions for best practice. We offer two suggestions for now. First, use your R script to
save finalized commands. Type in the console to practice and debug, then use the script to
save what worked. Second, R scripts allow you to save comments, or annotations, to your
code. Anything following the # symbol in a script will not be treated like an R command—
essentially, R will skip over it. You can use comments to explain what your commands do.
This is helpful for transparency when sharing code with others and for reminding yourself
what you were doing when you next return to R. It is customary to use a double comment
character ## if a comment occupies an entire line and use a single comment character # if a
comment is made within a line after an R command. The code below provides an example of
commenting.

this is the start of an R script

the heading provides some information about the file

File name: testing_arithm.R

Author: Kosuke Imai and Nora Webb Williams

Purpose: Practicing basic math commands and commenting in R

##

5 - 3 # what is 5 minus 3?

5 / 3

5 ˆ 3

5 * (10 - 3) # a bit more complex

sqrt(4) # this function will take the square root of a number

1.3.3 LOADING PACKAGES
One of the benefits of using R is that many researchers have developed open-source pack-

ages that are easily installed and used for your own projects. Packages might contain data,
functions, or other tools. In this book, we rely heavily on a family of packages collectively
referred to as the tidyverse. The tidyverse packages include ggplot2, dplyr, tidyr, readr,
purrr, tibble, and a few others. As mentioned previously, you can think of the tidyverse as a
dialect of R programming. The tidyverse is in continuing development, meaning that some
of the functions are subject to change (though many of the core functions are fairly stable). If
you encounter difficulties getting our example code to run, it may be because the tidyverse

12 Chapter 1: Introduction

has changed. If this is the case, you can look up documentation about the package to learn
how to update your code.

When you open an R script, you can usually tell fairly quickly whether the author is using
base R or the tidyverse (or both—we can mix and match to tell R what we want it to do).
Scripts in base R tend to have lots of dollar signs ($) and square brackets ([]) while scripts
using the tidyverse tend to have lots of what we call the pipe operator (%>%).

The install.packages() command will download the required package materials
to your computer. You only need to install a package once per computer, though we can
update packages later upon the release of a new version (by clicking Update or reinstalling
it via the install.packages() function). In RStudio, you can also install packages
by using the Tools > Install Packages... dropdown menu. After you have suc-
cessfully installed a package, you load it for your current R session with the library()
command. Although you do not need to install packages at the start of every R session (or
script), you do need to load your necessary packages every time. If you receive an error that
a certain function is not found, it may mean that you forgot to run a library() command
for the package that contains that function.

You can run the following commands to install the package devtools, which con-
tains a function that will then allow you to install the qss package. This package has all
the data you will need for the examples and exercises in this book. The double colons
(::) in devtools::install_github() tell R to look in the devtools package for the
install_github() function. This function is used to install a package from GitHub,
which is a website to build and share software. Note thatR is particular about quotationmarks
when installing and loading packages. Make sure to use quotes around the package namewith
the install() commands. You do not have to use quotes around the package name
with library() (but you can).

install.packages("devtools") # install the package

library(devtools) # load the package

install a package from GitHub

devtools::install_github("kosukeimai/qss-package",

build_vignettes = TRUE)

you may need to allow R to update/install additional packages

load the qss package

library("qss")

It is best practice to load the packages you will need at the start of your R session (or
at the start of your R script). That way you can troubleshoot package installation at the
start. Sometimes, installing a package will require you to install additional packages, often
called dependencies (the other packages that the one you are installing depends on to run
properly). You may also encounter difficulties depending on which version of R you have
and which version of a package you are installing. The internet is a great resource for trou-
bleshooting these issues. Your instructor or computing/statistics helpdesks may also be able
to provide assistance. For now, practice by installing and loading the tidyverse family of
packages.

1.3 Introduction to R and the tidyverse 13

library(tidyverse)

if this command does not work, remember to install the package

1.3.4 OBJECTS
R can store information as an object with a name of our choice. Once we have created an

object, we just refer to it by name. That is, we are using objects as “shortcuts” to some piece of
information or data. For this reason, it is important to use an intuitive and informative name.
The name of our object must follow certain restrictions. For example, it cannot begin with a
number (but it can contain numbers). Object names also should not contain spaces. Wemust
avoid special characters such as % and $, which have specific meanings in R. In RStudio, we
will see the objects we created in the upper-right window called Environment (see figure
1.1). We use the assignment operator <- to assign some value to an object.

For example, we can store the result of the above calculation as an object named result,
and once this is done we can access the value by referring to the object’s name. By default, R
will print the value of the object to the console if we just enter the object name and hit Enter.
Alternatively, we can explicitly print it by using the print() function.

result <- 5 + 3

result

[1] 8

print(result)

[1] 8

Note that if we assign a different value to the same object name, then the value of the object
will be changed. And so, wemust be careful not to overwrite previously assigned information
that we plan to use later.

result <- 5 - 3

result

[1] 2

Another thing to be careful about is that object names are case sensitive. For example,
Hello is not the same as either hello or HELLO. As a consequence, we receive an error in
the R console when we type Result rather than result, which is defined above.

Result

Error in eval(expr, envir, enclos): object ’Result’ not found

14 Chapter 1: Introduction

Encountering programming errors or bugs is part of the learning process. The tricky part
is figuring out how to fix them. Here, the error message tells us that the Result object does
not exist. We can see the list of existing objects in the Environment tab in the upper-right
window (see figure 1.1), wherewewill find that the correct object isresult. It is also possible
to obtain the same list by using the ls() function, which will list all the current objects that
exist in R.

So far, we have only assigned numbers to an object. But R can represent various other types
of values as objects. For example, we can store a string of characters by using quotationmarks.

kosuke <- "instructor"

kosuke

[1] "instructor"

In character strings, spacing is allowed.

kosuke <- "instructor and author"

kosuke

[1] "instructor and author"

Notice that R treats numbers like characters when we tell it to do so by surrounding a
number with quotation marks.

Result <- "5"

Result

[1] "5"

However, arithmetic operations like addition and subtraction cannot be used for character
strings. For example, attempting to divide or take a square root of a character string will result
in an error.

Result / 3

Error in Result/3: non-numeric argument to binary operator

sqrt(Result)

Error in sqrt(Result): non-numeric argument to mathematical

function

R recognizes different types of objects by assigning each object to a class. Separating objects
into classes allows R to perform appropriate operations on an object depending on its class.
For example, a number is stored as a numeric object whereas a character string is recognized

1.3 Introduction to R and the tidyverse 15

as a character object (sometimes also referred to as a string). In RStudio, the Environment
window will show the class of an object as well as its name. The function (which by the way
is another class) class() tells us to which class an object belongs.

result

[1] 2

class(result)

[1] "numeric"

Result

[1] "5"

class(Result)

[1] "character"

class(sqrt)

[1] "function"

There are many other classes of objects in R, some of which will be introduced throughout
this book. In fact, it is even possible to create our own object classes.

1.3.5 VECTORS
We present the simplest (but most inefficient) way of entering data into R. Table 1.1

contains estimates of the world population (in thousands) over the past several decades.
We can enter these data into R as a numeric vector object. A vector or a one-dimensional

array simply represents a collection of information stored in a specific order. We use the
function c(), which stands for “concatenate,” to enter a data vector with multiple values

Table 1.1. World Population Estimates.

World population
Year (thousands)

1950 2,525,779
1960 3,026,003
1970 3,691,173
1980 4,449,049
1990 5,320,817
2000 6,127,700
2010 6,916,183

Source: United Nations, Department of Economic and
Social Affairs, Population Division (2013). World Popula-
tion Prospects: The 2012 Revision, DVD Edition.

16 Chapter 1: Introduction

with commas separating different elements of the vector we are creating. For example, we
can enter the world population estimates as elements of a single vector.

world.pop <- c(2525779, 3026003, 3691173, 4449049, 5320817, 6127700,

6916183)

world.pop

[1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

The c() function can be used to combine multiple vectors into one.

pop.first <- c(2525779, 3026003, 3691173)

pop.second <- c(4449049, 5320817, 6127700, 6916183)

pop.all <- c(pop.first, pop.second)

pop.all

[1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

To access specific elements of a vector, we use square brackets []. This is called indexing.
Multiple elements can be extracted via a vector of indices within square brackets, while the
minus sign, -, removes the corresponding element from a vector. Note that none of these
operations changes the original vector.

world.pop[2]

[1] 3026003

world.pop[c(2, 4)]

[1] 3026003 4449049

world.pop[c(4, 2)]

[1] 4449049 3026003

world.pop[-3]

[1] 2525779 3026003 4449049 5320817 6127700 6916183

Since each element of this vector is a numeric value, we can apply arithmetic operations
to it. The operations will be repeated for each element of the vector. Let’s give the population
estimates in millions instead of thousands by dividing each element of the vector by 1000.

pop.million <- world.pop / 1000

pop.million

1.3 Introduction to R and the tidyverse 17

[1] 2525.779 3026.003 3691.173 4449.049 5320.817 6127.700

[7] 6916.183

We can also express each population estimate as a proportion of the 1950 population
estimate. Recall that the 1950 estimate is the first element of the vector world.pop.

pop.rate <- world.pop / world.pop[1]

pop.rate

[1] 1.000000 1.198047 1.461400 1.761456 2.106604 2.426063

[7] 2.738238

In addition, arithmetic operations can be done using multiple vectors. For example, we
can calculate the percentage increase in population for each decade, defined as the increase
over the decade divided by its beginning population. Suppose that the population was 100
thousand in one year and increased to 120 thousand in the following year. In this case, we say
that the population increased by 20%. To compute the percentage increase for each decade,
we first create two vectors, one without the first decade and the other without the last decade.
We then subtract the second vector from the first vector. Each element of the resulting vector
equals the population increase from the decade before. For example, the first element is the
difference between the 1960 population estimate and the 1950 estimate. We then divide each
element in the vector of population increases by the population at the end of the decade to
get the percentage increase.

pop.increase <- world.pop[-1] - world.pop[-7]

percent.increase <- (pop.increase / world.pop[-7]) * 100

percent.increase

[1] 19.80474 21.98180 20.53212 19.59448 15.16464 12.86752

Finally, we can also replace the values associated with particular indices by using the usual
assignment operator (<-).

percent.increase[c(1, 2)] <- c(20, 22)

percent.increase

[1] 20.00000 22.00000 20.53212 19.59448 15.16464 12.86752

1.3.6 FUNCTIONS
Functions are important objects in R and perform a wide range of tasks. A function

often takes multiple input objects and returns an output object. We have already seen sev-
eral functions: sqrt(), print(), class(), and c(). In R, a function generally runs as
funcname(input)where funcname is the function name and input is the input object.

18 Chapter 1: Introduction

In programming (and in math), we call these inputs arguments. For example, in the syntax
sqrt(4), sqrt is the function name and 4 is the argument or the input object.

Somebasic functions useful for summarizingdata includelength() for length of a vector
or equivalently the number of elements in the vector, min() forminimum value, max() for
maximum value, range() for the range of the data (the highest and lowest values), mean()
for themean or average, and sum() for the sum of the data (adding all the values). Right now
we are only inputting one object into these functions so we will not use argument names.

length(world.pop)

[1] 7

min(world.pop)

[1] 2525779

max(world.pop)

[1] 6916183

range(world.pop)

[1] 2525779 6916183

mean(world.pop)

[1] 4579529

sum(world.pop) / length(world.pop)

[1] 4579529

The last expression above gives another way of calculating the mean: as the sum of all
elements in a vector divided by the number of elements in that vector.

When multiple arguments are given, the syntax looks like funcname(input1,
input2). The order of inputs matters. That is, funcname(input1, input2) is dif-
ferent from funcname(input2, input1). To avoid confusion and problems stemming
from the order in which we list arguments, it is also a good idea to specify the name of the
argument that each input corresponds to. This looks like funcname(arg1 = input1,
arg2 = input2).

For example, theseq() function generates a vector composed of an increasing or decreas-
ing sequence of numbers. The first argument from specifies the number to start from; the
second argument to specifies the number at which to end the sequence; the last argument
by indicates the interval to increase or decrease by. We can create an object for the year
variable from table 1.1 using this function.

year <- seq(from = 1950, to = 2010, by = 10)

year

[1] 1950 1960 1970 1980 1990 2000 2010

1.3 Introduction to R and the tidyverse 19

Notice howwe can switch the order of the arguments without changing the output because
we have named the input objects.

seq(to = 2010, by = 10, from = 1950)

[1] 1950 1960 1970 1980 1990 2000 2010

Although not relevant in this particular example, we can also create a decreasing sequence
using seq(). In addition, the colon operator : creates a simple sequence, beginning with
the first number specified and increasing or decreasing by 1 to the last number specified.

seq(from = 2010, to = 1950, by = -10)

[1] 2010 2000 1990 1980 1970 1960 1950

2008:2012

[1] 2008 2009 2010 2011 2012

2012:2008

[1] 2012 2011 2010 2009 2008

The names() function can access and assign names to elements of a vector. Element
names are not part of the data themselves, but are helpful attributes of the R object.
Below, we see that the object world.pop does not yet have the names attribute, with
names(world.pop) returning the NULL value. However, once we assign the year vec-
tor as the labels for the object, each element of world.pop is printed with an informative
label.

names(world.pop)

NULL

names(world.pop) <- year

names(world.pop)

[1] "1950" "1960" "1970" "1980" "1990" "2000" "2010"

world.pop

1950 1960 1970 1980 1990 2000 2010

2525779 3026003 3691173 4449049 5320817 6127700 6916183

In many situations, we want to create our own functions and use them repeatedly. This
allows us to avoid duplicating identical (or nearly identical) sets of code chunks, making our
code more efficient and easily interpretable. The function() function can create a new
function. The syntax takes the following form:

20 Chapter 1: Introduction

myfunction <- function(input1, input2, ..., inputN) {

DEFINE "output" USING INPUTS

return(output)

}

In this example code, myfunction is the function name, input1, input2,...,
inputN are the input arguments, and the commands within the brackets { } define the
actual function. Finally, the return() function returns the output of the function.We begin
with a simple example, creating a function to compute a summary of a numeric vector. It takes
a vector as an input and returns the sumof all the numbers in the vector, the number of objects
in the vector (the length), and the mean of the vector.

my.summary <- function(x){ # function takes one input, x

s.out <- sum(x)

l.out <- length(x)

m.out <- s.out / l.out

out <- c(s.out, l.out, m.out) # define the output

names(out) <- c("sum", "length", "mean") # add labels

return(out) # end function by calling output

}

z <- 1:10 # z is a vector from 1 to 10

my.summary(z) # run my.summary function on z

sum length mean

55.0 10.0 5.5

my.summary(world.pop) # run my.summary function on world.pop

sum length mean

32056704 7 4579529

Note that objects, e.g., x, s.out, l.out, m.out, and out in the above example, can be
defined within a function independently of the environment in which the function is being
created. This means that we need not worry about using identical names for objects inside a
function and those outside it.

1.3.7 DATA FILES: LOADING AND SUBSETTING
So far, we have only used data that we manually entered into R. But, most of the time, we

will load data from an external file. In this book, we will use the following two data file types:

• CSV or comma-separated values files represent tabular data. This is conceptually
similar to a spreadsheet of data values like Microsoft Excel or Google Sheets. Each
observation is separated by line breaks and each field within the observation is
separated by a comma, a tab, or some other character or string.

1.3 Introduction to R and the tidyverse 21

• RData files represent a collection of R objects including data sets. These can contain
multiple R objects of different kinds. They are useful for saving intermediate results
from our R code as well as data files.

Before interacting with data files, we must ensure they reside in the working directory,
which is the location on your computer where R will by default load data from and save data
to. There are different ways to change the working directory. In RStudio, the default work-
ing directory is shown in the bottom-right window under the Files tab (see figure 1.1).
Oftentimes, however, the default directory is not the directory we want to use. To change
the working directory, click on More > Set As Working Directory after picking
the folder we want to work from. Alternatively, we can use the RStudio pull-down menu
Session > Set Working Directory > Choose Directory... and then pick
the folder we want to work from. Then we will see our files and folders in the bottom-right
window.

It is also possible to change the working directory using the setwd() function by spec-
ifying the full path to the folder of our choice as a character string. To display the current
working directory, use the function getwd() without providing an input. For example, the
following syntax will set the working directory to qss/INTRO and confirms the result (we
suppress the output here).

getwd() # check what your current working directory is

setwd("qss/INTRO") # set your working directory with a path

getwd() # check that you changed your working directory

Suppose that the United Nations population data in table 1.1 are saved as a CSV file called
UNpop.csv on our computer. The data resemble the example below. In tabular data like this,
we often think of (and refer to) the columns as variables and the rows as observations. You
will notice that we use the terms column and variable interchangeably, just as we use row and
observation interchangeably.

year, world.pop

1950, 2525779

1960, 3026003

1970, 3691173

1980, 4449049

1990, 5320817

2000, 6127700

2010, 6916183

In RStudio, we can read in or load CSV files by going to the dropdownmenu in the upper-
right Environment window (see figure 1.1) and clicking Import Dataset > From
Text File.... Alternatively, we can use the read_csv() function from the readr
package. The following syntax loads the data as a tibble object (more on this object
below).

22 Chapter 1: Introduction

if your working directory is where the .csv file is stored

UNpop <- read_csv("UNpop.csv")

class(UNpop) # what type of object is UNpop?

On the other hand, if the same data set is saved on our computer as an object in an RData
file named UNpop.RData, then we can use the load() function, which will load all the R

objects saved in UNpop.RData into our R session. We do not need to use the assignment
operator (<-) with the load() function with an RData file because the R objects stored in
the file already have object names. Note that this code will overwrite the data set we loaded
with read_csv() above because the objects have the same name. Although that is what we
want in this case, there is a general lesson here that it is important to keep track of object
names so that we do not accidentally overwrite objects.

load("UNpop.RData")

Note that R can access any file on our computer if the full location is specified. The loca-
tion of a file on your computer is called the path. For example, we can use syntax such
as read_csv("Documents/qss/INTRO/UNpop.csv") if the data file UNpop.csv is
stored in the directory Documents/qss/INTRO/. However, setting the working directory
as shown above allows us to avoid a lot of tedious typing (and typos).

Increasingly, researchers use R projects instead of changing the working directory at
the start of each script. An R project tells RStudio which directory is home base. Then,
instead of pointing R to look for files on your computer using absolute paths, such
as read_csv("Documents/qss/INTRO/UNpop.csv"), you can instead use relative
paths. For example, say your R project is in a directory called QSS on your com-
puter, and you have a subdirectory in that folder called INTRO, where you are saving
all the .csv files for this chapter. You could then use the following relative path in the
read_csv() function to find UNpop.csv. To create an R project, you can use the File
> New Project dropdown menu in RStudio or click on the project icon in the upper
right.

specifying a relative path to find and read in UNpop.csv

will overwrite previously loaded UNpop object

UNpop <- read_csv("INTRO/UNpop.csv")

class(UNpop) # what type of object is UNpop?

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

Having discussed multiple ways to read in data saved on your computer as a .csv or
.Rdata, we can now make things even easier for the data used in this textbook. If you
have successfully installed the qss package (see section 1.3.3), you can load in any of the
referenced data with the following syntax and the data() command.

1.3 Introduction to R and the tidyverse 23

load the package

library(qss)

load the UN pop data

will overwrite previously loaded UNpop object

data(UNpop, package = "qss")

Now that we’ve loaded UNpop, let’s see what we have. We can think of a data.frame or
tibble object as a spreadsheet. We can view a table-like representation of data.frame
or tibble objects in RStudio by clicking on the object name in the Environment tab
in the upper-right window (see figure 1.1). Alternatively, we can use the View() function
with the object name as the input argument. This will open a new tab displaying the data.
Useful functions for this object include the names() function to return a vector of variable
names, the nrow() function to return the number of rows, the ncol() function to return
the number of columns, and the dim() function to combine the outputs of ncol() and
nrow() into a vector (also known as the dimensions of the data).

names(UNpop)

[1] "year" "world.pop"

nrow(UNpop)

[1] 7

ncol(UNpop)

[1] 2

dim(UNpop)

[1] 7 2

There are several ways to access an individual variable. We begin with the base R syntax.
First, one could use the $ operator to extract a variable from a data.frame object, which
returns a vector containing the specified variable.

UNpop$world.pop

[1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

Second, we could also use indexing [], as done for a vector. Since a data.frame object
is a two-dimensional array, we need two indexes, one for rows and the other for columns.
Using brackets with a comma [rows, columns] allows users to call specific rows and
columns by either row/column numbers or row/column names. If we use row/column num-
bers, sequencing functions covered above, i.e., : and c(), will be useful. If we do not specify
a row (column) index, then the syntax will return all rows (columns). Here are some syntax
examples, which show how this indexing works.

24 Chapter 1: Introduction

subset all rows for column called "world.pop" from UNpop data

UNpop[, "world.pop"]

[1] 2525779 3026003 3691173 4449049 5320817 6127700 6916183

subset the first three rows (and all columns)

UNpop[c(1, 2, 3),]

year world.pop

1 1950 2525779

2 1960 3026003

3 1970 3691173

subset the first three rows of the "year" column

UNpop[1:3, "year"]

[1] 1950 1960 1970

In the tidyverse syntax, extracting subsets of data looks a bit different. Instead of using lots
of brackets, we will begin by using two functions: slice() and select(). The slice()
function returns rows by number (or other criteria), while select() returns columns by
name, number, or other criteria (more on this in a bit). The first input argument in slice()
or select() is the data. The second input provides information about how to subset the
data. Notice that the base R syntax (see code above) returns a vector, while the tidyverse

syntax returns a tibble.

subset the first three rows of UNpop with tidyverse

slice(UNpop, n = 1:3)

year world.pop

1 1950 2525779

2 1960 3026003

3 1970 3691173

extract/subset the world.pop variable (column)

select(UNpop, world.pop)

world.pop

1 2525779

2 3026003

3 3691173

4 4449049

5 5320817

6 6127700

7 6916183

Let’s say we wanted to subset the first three rows just for the variable year. We could
do that in any of the following ways—notice that we can nest a slice() command

1.3 Introduction to R and the tidyverse 25

inside a select() command. R will select the year column and then slice the first
three rows.

base R subset the first three rows of the year variable

UNpop[1:3, "year"]

[1] 1950 1960 1970

or in tidyverse, combining slice() and select()

select(slice(UNpop, 1:3), year)

year

1 1950

2 1960

3 1970

Instead of nesting the slice() into select(), we could use the pipe operator %>% to
link commands together. This tells R to do something and then do something else to the
output of the first something. Chaining functions together like this will become very useful
as our tasks become more complicated.

UNpop %>% # take the UNpop data we have loaded, and then...

slice(1:3) %>% # subset the first three rows, and then...

select(year) # subset the year column

year

1 1950

2 1960

3 1970

As another subsetting example, imagine that we want to extract every other row of the
world.pop column from UNpop (i.e., we want rows 1, 3, 5, etc. for the world.pop vari-
able). We could use an additional helper function, n(), which returns the number of rows in
the data.frame or tibble.

UNpop %>%

slice(seq(1, n(), by = 2)) %>% # using a sequence from 1 to n()

select(world.pop)

world.pop

1 2525779

2 3691173

3 5320817

4 6916183

26 Chapter 1: Introduction

Afinal example of how to subset these specific rows and column uses the filter() func-
tion. filter() is to rows what select() is to columns—it subsets rows by name, order,
or other criteria. These are two very commonly used functions in the tidyverse. To keep them
straight, note that select() has a c in it (and therefore is for columns), while filter()
has an r in it (and therefore is used for rows). In the example below, filter() says to subset
rows if their row number divided by 2 gives a remainder of 1. The %% operator returns the
modulus, i.e., division remainder. The function row_number() returns the row number of
an observation.

UNpop %>%

filter(row_number() %% 2 == 1) %>%

select(world.pop)

world.pop

1 2525779

2 3691173

3 5320817

4 6916183

The filter(row_number() %% 2 == 1) in the above code makes use of what is
called a conditional or logical statement. We will discuss these more in depth in chapter 2. For
now, think of these as “if ” conditions, telling R to do something if a condition is met. The
condition might be that something is equal to something else, such as the modulus being
equal to 1 as in the example. The “equal to” condition is indicated in Rwith == (note that this
is not the same as a single =). In the example, we are telling R to return the subset of rows
where the modulus of dividing the row number by 2 is equal to 1 (in other words, returning
the odd number observations 1, 3, 5, etc.).

For conditional statements, we can also use the “less than” (<), “less than or equal to”
(<=), “greater than” (>), and “greater than or equal to” (>=) syntax. An exclamation point in
a conditional indicates negation, so !=means “is not equal to.”

The following code uses filter(), select(), and a conditional statement with the
function pull() to extract a specific value from our data as a vector instead of a tibble.
Let’s say, for example, that we wanted to know what the world population was in 1970. We
could use the following commands.

pop.1970 <- UNpop %>% # take the UNpop data and then...

filter(year == 1970) %>% # subset rows where year is equal to 1970

select(world.pop) %>% # subset just the world.pop column

pull() # return a vector, not a tibble

print the vector to the console to see it

print(pop.1970)

[1] 3691173

1.3 Introduction to R and the tidyverse 27

1.3.8 ADDING VARIABLES
Suppose we wanted to take the population data and add an additional column based on

a current column. For example, perhaps we want to have the world population in millions,
instead of the raw figure in the original data. We can use the mutate() function to create
that variable, which we call world.pop.mill, and add it to the tibble. We can then drop
the original world.pop variable using the select() function with a - and the column
name. In the example below, we also use <- to save a new version of the data that contains
the new column. Note that if we put the same object name on both sides of the <-, that
would overwrite the existing data. If you run the code below, you should have both UNpop
and UNpop.mill in your Environment. You may want to look at the new data to confirm
that the new variable is as you expect.

UNpop.mill <- UNpop %>% # create a new tibble from UNpop

create new variable world.pop.mill

mutate(world.pop.mill = world.pop / 1000) %>%

select(-world.pop) # drop the original world.pop column

The mutate() function is a very useful command. We used it above to do an arithmetic
operation on a column. We can also use it to combine columns based on our specifications,
as in the example below. Let’s say we wanted a variable that took the world population and
divided it by the year (why we would want to do this is unclear, but let’s go with it for now).
The following code shows how we could do that by using the column names.

adding a nonsense variable to the UNpop.mill data

UNpop.mill <- UNpop.mill %>%

mutate(nonsense.var = world.pop.mill / year)

We can combine the mutate() function with conditional statements in useful ways by
using the function if_else(). The function tells R to do something if a conditional state-
ment ismet and to do something else if the statement is notmet. Saywewanted a new variable
that indicates whether or not a row contains data from after 1980. We’ll call this new variable
after.1980. We want this variable to have two possible values: 1 if the row is from after
1980 and 0 if it’s not. In the example below, we use mutate() to tell R that we want a new
variable called after.1980. The value that each row will have for this new column is set
by the if_else() function. The conditional statement is the first argument. It tells R to
check the year column for a given row. If year is greater than or equal to 1980, then the
value for the variable after.1980 should be 1. If year is not greater than or equal to 1980,
then the value for the variable after.1980 should be 0. It is usually a good idea to check
that your new variable looks the way you expect.

adding a variable with if_else

UNpop.mill <- UNpop.mill %>%

mutate(after.1980 = if_else(year >= 1980, 1, 0))

28 Chapter 1: Introduction

A final example with mutate() and if_else() uses a very helpful conditional symbol:
%in%. We can follow %in%with a vector of values. Rwill then check whether a specific value
matches something in that vector. For example, let’s say that we also wanted to add a variable
noting whether a row was from the following specific set of years (imagine that these years
are of particular interest to us): 1950, 1980, and 2000. In the following code, we first create
a vector of those years, then we reference it within if_else() to create a new variable,
years.of.interest.

creating a vector of the years of interest

specific.years <- c(1950, 1980, 2000)

adding a variable with if_else and %in%

UNpop.mill <- UNpop.mill %>%

mutate(year.of.interest = if_else(year %in% specific.years, 1, 0))

1.3.9 DATA FRAMES: SUMMARIZING
Having loaded our data and created some new variables, we now turn to some ways to

summarize the data. The summary() function is useful for this. The summary() function
yields, for each variable in the input data.frame or tibble object, the minimum value,
the first quartile (or 25th percentile), the median (or 50th percentile), the third quartile (or
75th percentile), and themaximumvalue.We can also use functions likemean() to compute
summary values for specific variables in the data. See section 3.3 for more discussion.

summary(UNpop.mill)

year world.pop.mill nonsense.var

Min. :1950 Min. :2526 Min. :1.295

1st Qu.:1965 1st Qu.:3359 1st Qu.:1.709

Median :1980 Median :4449 Median :2.247

Mean :1980 Mean :4580 Mean :2.305

3rd Qu.:1995 3rd Qu.:5724 3rd Qu.:2.869

Max. :2010 Max. :6916 Max. :3.441

after.1980 year.of.interest

Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000

Median :1.0000 Median :0.0000

Mean :0.5714 Mean :0.4286

3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000

mean(UNpop.mill$world.pop.mill)

[1] 4579.529

In R, missing values are represented by NA. When applied to an object withmissing values,
functions may or may not automatically remove those values before performing operations.

1.3 Introduction to R and the tidyverse 29

We will discuss the details of handling missing values in section 3.2. Here we note that
for many functions, like mean(), the argument na.rm = TRUE will remove missing data
before operations occur. Below we use the add_row() function to add a row with NA values
to demonstrate the issue that arises with mean() and how to fix it.

add a row where value for each column is NA

UNpop.mill.wNAs <- UNpop.mill %>%

add_row(year = NA, world.pop.mill = NA,

nonsense.var = NA, after.1980 = NA,

year.of.interest = NA)

take the mean of world.pop.mill (returns NA)

mean(UNpop.mill.wNAs$world.pop.mill)

[1] NA

take the mean of world.pop.mill (ignores the NA)

mean(UNpop.mill.wNAs$world.pop.mill, na.rm = TRUE)

[1] 4579.529

The tidyverse offers a useful way to generate summaries with the summarize() function
(or summarise(), both spellings are accepted). With this function, you can specify mul-
tiple functions to apply to variables within a data set, returning the results as new columns
in a tibble. The example below returns both the median and the mean of world.pop.
mill.

UNpop.mill %>%

summarize(mean.pop = mean(world.pop.mill),

median.pop = median(world.pop.mill))

mean.pop median.pop

1 4579.529 4449.049

What if we wanted to know the average (mean) world population but not for the full
time period? For example, we might want to know what the average population was before
1980 and after 1980. To do this, we can combine the summarize() function with the
group_by() function, which tells R to treat subsets of the data separately. We need to
tell R which variable to use to group the rows. We can use the variable we created earlier,
after.1980, for this purpose.

UNpop.mill %>%

create subset group for each value of after.1980

group_by(after.1980) %>%

calculate mean for each group

summarize(mean.pop = mean(world.pop.mill))

30 Chapter 1: Introduction

A tibble: 2 x 2

after.1980 mean.pop

<dbl> <dbl>

1 0 3081.

2 1 5703.

1.3.10 SAVING OBJECTS
The objects we create in an R session will be temporarily saved in the workspace, which

is the current working environment. As mentioned earlier, the ls() function displays the
names of all objects currently stored in theworkspace. InRStudio, all objects in theworkspace
appear in the Environment tab in the upper-right corner. However, these objects will be
lost once we terminate the current session. This can be avoided if we save the workspace at
the end of each session as an RData file.

When we quit R, we will be asked whether we would like to save the workspace. We should
answer no to this so thatwe get in the habit of explicitly saving onlywhatweneed. If we answer
yes, then R will save the entire workspace as .RData in the working directory without an
explicit file name and automatically load it next time we launch R. This is not recommended
practice because the .RData file is invisible to users of many operating systems and R will
not tell us what objects are loaded unless we explicitly issue the ls() function.

In RStudio, we can explicitly save the workspace by clicking the save icon in the upper-
right Environmentwindow (see figure 1.1). Alternatively, from the navigation bar, click on
Session > Save Workspace As..., and then pick a location to save the file. Be sure
to use the file extension .RData. To load the same workspace the next time we start RStudio,
click the open file icon in the upper-right Environment window or select Session >
Load Workspace....

It is also possible to save theworkspace using thesave.image() function. The file exten-
sion .RData should always be used at the end of the file name to save the workspace. Unless
the full path is specified, objects will be saved to the working directory. For example, the
following syntax saves the workspace as Chapter1.RData in the qss/INTRO directory
provided that this directory already exists.

save.image("qss/INTRO/Chapter1.RData")

Generally speaking, however, it is not recommended to save the workspace. Best practice
is to turn off the RStudio prompt to save your workspace by going to Tools > Global
Options > General and setting “Saveworkspace to .RData on exit” to “Never” (while you
have theGlobal Options open, note that this is alsowhere you can change the appearance
of RStudio—changing to a different color scheme with a nonwhite background can be easier
on the eyes.)

It is better to save your R source code (e.g., scripts), which you can rerun to reproduce
your results. Sometimes we wish to save a specific object (e.g., a data.frame or tibble
object) rather than the entire workspace. This can be done with the save() function as
in save(xxx, file = "yyy.RData") where xxx is the object name and yyy.RData

(continued...)

General Index

A
absolute value, 79
addition rule, 282
adjacency matrix, 239
adjusted R2, 195, 432
aesthetics, 97
alternative hypothesis, 395
AND, 46
animation, 271
arguments, 18
assignment operator, 13
association, 59
asymptotic theorems, 342
average, 18
average treatment effect, 59
axioms, 282

B
background, 33
backtick, 63
bag of words, 223
bar plot, 97
Bayes’ rule, 307
Bayesian, 280
before-and-after design, 72
Bernoulli random variable, 321
betweenness, 243, 248
bias, 154, 359
bin, 100
binary random variable, 321
binary variable, 44, 45
binomial distribution, 325
binomial theorem, 327
birthday problem, 285
bivariate relationships, 116
box plot, 103
butterfly ballot, 185

C
categorical variable, 53
causal effects, 56
causal inference, 56
CDF, see cumulative distribution function

ceiling effects, 114
census, 106
centering, 131
central limit theorem, 346, 371, 388, 412, 428,

433
centrality, 241
centroid, 131
ceteris paribus, 191
character, 15, 55
character variable, 97
class, 14
classification, 158
classification error, 235
closeness, 243, 248
clustering algorithms, 128
clusters, 128
coefficient of determination, 181, 195, 432
coefficients, 166
column, 21
combinations, 289
comma-separated values, 20
complement, 283
complete randomization, 360, 390
computational revolution, 1
conditional, 26
conditional expectation, 418
conditional expectation function, 419
conditional independence, 303, 315
conditional probability, 294, 297
conditional statements, 53
confidence bands, 372
confidence interval, 372
confidence level, 372
confounders, 69, 258
confounding bias, 69
confusion matrix, 158
consistent, 359
contingency table, 42
continuous random variable, 321, 322
control group, 59, 65
corpus, 218
correlation, 122, 165
correlation coefficient, 122
counterfactual, 38, 56

450 General Index

covariance, 432
coverage probability, 374
critical value, 372, 388
cross tabulation, 42
cross-section comparison design, 65
cross-section data, 72
CSV, see comma-separated values
cumulative distribution function, 322, 323
cumulative sum, 344

D
data revolution, 1
data-generating process, 167, 288, 362, 418
dates, 153
deciles, 77
degree, 241, 247
degrees of freedom, 195, 369, 387
density, 100, 323
dependencies, 12
descriptive statistics, 75
difference-in-differences, 73
difference-in-means estimator, 59, 190, 360
dimensions, 23
directed, 245
directed network, 239
discrete random variable, 321
disturbance, 166
document frequency, 225
document-term matrix, 222
dummy variable, 45
DW-NOMINATE scores, 116

E
edgelist, 246
edges, 240
Electoral College, 144
error bands, 372
error term, 166
estimation error, 358
estimator, 357
event, 281
exogeneity, 418
expectation, 335, 359
experiment, 281
experimental data, 40
exploratory data analysis, 216
external validity, 60, 65, 208

F
factor variable, 53, 97
factorial, 285
factorial variable, 53
false discovery, 409
false discovery rate, 313
false negative, 158
false positive, 158, 313
false positive rate, 308
farness, 242

figures, 96
first moment, 337
first quartile, 76
Fisher’s exact test, 395
fitted value, 167
floor effects, 114
frequency, 100
frequentist, 279
function, 10
fundamental problem of causal inference, 57,

390

G
Gaussian distribution, 328
get out the vote, 60
Gini coefficient, 120
Gini index, 120
Google, 250
graph, 240

H
Hawthorne effect, 61, 64
heterogeneous treatment effects, 197
heteroskedasticity, 428
heteroskedasticity-robust standard errors, 428
hexadecimal, 262
hexadecimal color code, 262
histogram, 100, 155
homoskedasticity, 426
hypothesis testing, 390

I
i.i.d., see independently and identically

distributed
ideology, 114
idf, see inverse document frequency
immutable characteristics, 58
in-sample prediction, 187, 236
indegree, 247
independence, 301
independently and identically distributed, 325
indexing, 16
indicator, 192
indicator function, 342
Institutional Review Board, 113
integration, 335
interaction effect, 198
intercept, 166
internal validity, 60, 65, 207, 208
interquartile range, 76
inverse document frequency, 225
inverse function, 207
IQR, see interquartile range
item count technique, 113
item nonresponse, 111
item response theory, 115
iterations, 146
iterative algorithm, 131

General Index 451

J
joint independence, 303
joint probability, 295

K
k-means, 128
Kish, 109

L
large sample theorems, 342
latent, 116
law of iterated expectation, 425
law of large numbers, 342, 359, 362
law of total probability, 284, 292, 296, 303
law of total variance, 427
least squares, 171
leave-one-out cross-validation, 236
lemmatization, 219
level of test, 395
levels, 55
limit, 279
linear algebra, 128
linear model, 166
linear regression, 162
linear relationship, 165
list, 128, 132
list experiment, 113
listwise deletion, 96
logarithmic transformation, 109, 286
logical, 26
logical conjunction, 46
logical disjunction, 46
logical operators, 46
logical values, 46
longitudinal data, 71
loop, 145, 236
loop counter, 145
Lorenz curve, 120
lower quartile, 76

M
main effect, 199
maps, 255
margin of error, 378
marginal probability, 294
matrix, 128, 131
maximum, 18
mean, 18
mean-squared error, 367
measurement models, 114
median, 28, 75, 102
merge, 174
metadata, 219
minimum, 18
misclassification, 158
misreporting, 112
Monte Carlo error, 289, 364
Monte Carlo simulation, 306, 324, 339, 343, 362

Monte Carlo simulation method, 287
Monty Hall problem, 305
multiple testing, 409
multistage cluster sampling, 109

N
natural experiment, 86, 257, 258
natural language processing, 218
natural logarithm, 109
network data, 238
no omitted variables, 420
nodes, 240
nonlinear relationship, 165
nonresponse, 359
normal distribution, 328, 346
null hypothesis, 394
numeric, 14
numeric variable, 100

O
object, 13
observational studies, 65, 420
observations, 21
one-sample tests, 397
one-sample t-test, 401
one-sample z-test, 400
one-sided p-values, 395
one-tailed p-values, 395
OR, 46
out-of-sample prediction, 187, 236
outcome variable, 40
outdegree, 247
outliers, 75, 185
overfit, 236
overfitting, 187

P
p-value, 394
packages, 11
PageRank, 250
panel data, 72
parameter, 357
participation rate, 89
Pascal’s triangle, 328
path, 22
PDF, see probability density function
percentiles, 28, 77
permutations, 284
pipe, 12
placebo test, 207
plots, 96
PMF, see probability mass function
political polarization, 119
population average treatment effect, 362
population mean, 335
positive predictive value, 308
posterior probability, 307
potential outcomes, 57

452 General Index

power, 411
power analysis, 411
power function, 413
predicted value, 167
prediction error, 154, 167
pretreatment variables, 64, 69
prior probability, 307
probability, 279
probability density function, 322
probability distributions, 321
probability mass function, 321
probability model, 321
probability sampling, 107
projection, 259
proof by contradiction, 394
proportion, 44
publication bias, 409

Q
Q–Q plot, 125, see quantile–quantile plot
quadratic function, 201
quantile–quantile plot, 125, 332, 388
quantiles, 75, 77, 125
quartiles, 28, 76
quincunx, 346
quintiles, 77
quota sampling, 107

R
R projects, 22
R2, 181, 195, 432
random digit dialing, 108
random variables, 321
randomization inference, 394
randomized controlled trials, 58, 360, 419
randomized experiments, 58
randomized response technique, 114
range, 18
rational number, 394
RData, 21
receiver, 239
reference distribution, 394
regex, 220
regression discontinuity design, 204
regression line, 167
regression towards the mean, 173, 332
regular expression, 220
representative, 107
residual, 167, 192
residual plot, 184
residual standard error, 432
residuals, 332
RGB, 262
RMS, see root-mean-square
root-mean-square, 79, 155, 171
root-mean-squared error, 155, 171, 367
row, 21
rule of thumb, 378

S
sample average, 45
sample average treatment effect, 59, 360
sample average treatment effect for the treated,

74
sample correlation, 433
sample mean, 45, 68, 335
sample selection bias, 60, 107
sample size calculation, 379
sample space, 281
sample without replacement, 393
sampling distribution, 359, 368, 394
sampling frame, 108, 111
sampling variability, 339
sampling with replacement, 288
sampling without replacement, 288
SATE, see sample average treatment effect
scaling, 131
scatter plot, 116, 163
scientific significance, 397, 402
scraping, 218
script, 10
second moment, 337
second quartile, 76
selection bias, 69
selection on observables, 420
sender, 239
set, 281
sharp null hypothesis, 394
simple random sampling, 107, 288, 358
simple randomization, 360, 390
simulation, 287
slope, 166
social desirability bias, 112
sparse, 222
sparsity, 222
spatial data, 255
spatial point data, 255
spatial polygon data, 255, 258
spatial voting, 115
spatial–temporal data, 256
SPSS, 31
standard deviation, 78, 80, 336
standard error, 368
standard normal distribution, 329, 332,

362
standardize, 131
standardized residuals, 332
STATA, 31
statistical control, 69
statistical significance, 397, 402
stemming, 219
step function, 326
stop words, 221
string, 15
Student’s t-distribution, 387
Student’s t-test, 416
subclassification, 69
sum, 18

General Index 453

sum of squared residuals, 171, 192
supervised learning, 136, 224
support, 336
survey, 89
survey sampling, 106
symmetric, 239

T
t-distribution, 387
t-statistic, 387, 429
t-test, 405
terciles, 77
term frequency, 221, 223, 225
term frequency-inverse document frequency,

225
term-document matrix, 222
test statistic, 394
tf-idf, see term frequency-inverse document

frequency
The Federalist Papers, 217
third quartile, 76
tilde, 54
time trend, 72
time-series plot, 119, 161
tokenizing, 219
topics, 223
total sum of squares, 181
treatment, 57
treatment group, 59, 65
treatment variable, 40, 57
true positive rate, 308, 313
true positives, 313
two-sample tests, 397
two-sample t-test, 404, 405
two-sample z-test, 404
two-sided p-value, 395, 398

two-tailed p-value, 395
type I error, 395
type II error, 395, 411

U
unbiased, 155, 359
unconfoundedness, 420
uncorrelated, 419
undirected, 245
undirected network, 239
uniform random variable, 322
unit nonresponse, 111, 383
unit response rate, 89
unobserved confounders, 419
unsupervised learning, 136, 223
upper quartile, 76

V
variable, 21
variance, 80, 336
vector, 10, 15
Venn diagram, 282, 283
vertices, 240

W
weighted average, 316
weights, 252
with replacement, 107
without replacement, 107
word cloud, 223
working directory, 21
workspace, 30

Z
z-score, 122, 131, 178, 330, 332, 347

R Index

SYMBOLS
*, 199
+, 10, 33, 97
-, 16, 33
:, 19, 23, 198
::, 12
<, 26, 48
<-, 13, 17, 22, 33
<=, 26, 48
=, 26, 33, 48
==, 26, 48
>, 26, 48
>=, 26, 48
[,], 23, 223
[[, 221
[[]], 130
[], 12, 16, 23
#, 11
##, 10, 11
$, 12, 13, 23, 49, 128, 130, 132, 252
%, 13
%>%, 12, 25, 52, 124
%%, 26, 151
%in%, 28, 71
&, 46, 48
ˆ, 79
ˆ2, 79
`, 63
~, 54, 124, 167
|, 46–48, 95
{, 146
{ }, 20
}, 146
]], 221

A
abs(), 79
across(), 297
add_predictions(), 185, 193, 201, 205, 235,

422
add_residuals(), 185
add_row(), 29
aes, 97
aes(), 97, 98, 100, 104, 116, 164

alpha, 263
anim_save(), 271
annotate(), 102, 161
anti_join(), 221
arrange(), 94, 248
arrange(desc()), 94
as.factor(), 55, 97
as.integer(), 46
as.matrix(), 129, 223, 241
as.numeric(), 153, 179
as_tibble(), 155
augment(), 169, 184, 434, 437

B
base, 110
betweenness(), 244, 248
bind_cols(), 177
bind_rows(), 161, 177, 236
bind_tf_idf(), 225
bookdown package, 9
borders(), 259–261
broom package, 133, 168, 183, 184, 429

C
c(), 15–17, 23
c_across(), 240
case_when(), 54, 148, 233, 298
cast_dtm(), 222, 227
cast_tdm(), 222
cbind(), 156, 177
centers, 132
character, 40
choose(), 291, 392
class, 39
class(), 15, 17
closeness(), 243, 248
cluster, 132
coef(), 168, 169
col_types, 40
colMeans(), 129
colnames(), 128, 228
color, 116
colors(), 262
colSums(), 129

456 R Index

column_to_rownames(), 241
content(), 221
coord_fixed(), 117
coord_quickmap(), 259
cor(), 124, 165
count(), 42, 90, 91, 133, 222, 294
cowplot package, 106
crossing(), 201, 301
cumsum(), 343, 344
cut(), 298

D
data(), 22, 258
data.frame, 23, 40, 128
data.frame(), 147
data_grid(), 193, 202, 205, 435
Date, 153
dbinom(), 326, 341
degree(), 241, 247
desc(), 248
devtools package, 12
devtools::install_github(),

12
difftime, 153
dim(), 23, 40, 65
DirSource(), 218
dnorm(), 332
double, 40
dplyr package, 11
drop_na(), 96
dunif(), 324

E
E(), 252
else if(){}, 150
enframe(), 228
exp(), 110, 207

F
facet_grid(), 124, 384
facet_wrap(), 124
factor, 55
factorial(), 286
FALSE, 46
fill, 98
filter(), 26, 49, 54, 71, 92, 94, 95
fisher.test(), 395, 396
fitted(), 168, 183, 235
floor_date(), 271
for, 146
foreign package, 31
formula, 167
full_join(), 174–177, 221, 266
function(), 19

G
geom_abline(), 126, 157, 169
geom_bar(), 97, 98

geom_boxplot(), 103, 104
geom_hist(), 155
geom_histogram(), 100, 101
geom_hline(), 102
geom_line(), 119
geom_map(), 259
geom_point(), 116, 126, 134, 135, 161, 164,

259
geom_pointrange(), 381
geom_polygon(), 267
geom_ribbon(), 435
geom_smooth(), 170
geom_text(), 157, 260
geom_vline(), 102
getwd(), 21
gganimate package, 271
ggplot(), 96–98, 100, 103, 106, 116, 124,

126, 135, 155, 156, 249, 254, 259, 263,
268, 332

ggplot2 package, 11, 96, 97, 133
ggsave(), 105
ggtitle(), 97
glance, 168, 183
glimpse(), 40, 65
graph.adjacency(), 241
graph_from_data_frame(), 251
graph_from_edgelist(), 246
grid.arrange(), 106
gridExtra package, 106
group(), 294
group_by(), 29, 42, 45, 51, 55, 63, 70, 91, 133,

232, 297

H
haven package, 31, 32
head(), 40, 65
hist(), 332, 355

I
i, 146
I(), 202
if(), 149
if(){}, 148, 149
if(){}else{}, 148, 149
if_else(), 27, 53, 148
igraph, 251, 254
igraph package, 241
import(), 31
ineq package, 278
ineq(), 278
inner_join(), 311
inspect(), 223
install(), 12
install.packages(), 12
install_github(), 12
integer, 46
IQR(), 76
is.na(), 93–95

R Index 457

iter, 132
iter.max, 132

K
kmeans(), 131–133, 227

L
labs, 100
lchoose(), 291
left_join(), 177, 317
length(), 18, 130
levels(), 55
lfactorial(), 286
library(), 12
list, 130, 183
list(), 80, 130
lm(), 167, 183, 192, 193, 196, 420–422, 429,

431
load(), 22, 31, 354
log(), 110
logical, 46, 49
ls(), 14, 30
lubridate package, 153

M
map_data(), 259, 277
map_df(), 340, 364, 377
map_lgl(), 377
maps package, 258, 259
matrix, 128
matrix(), 128
max(), 18, 94
mean(), 18, 28, 29, 45, 46, 49, 94, 105
median(), 76, 94, 148
min(), 18, 94
modelr package, 185, 193, 207, 422
mutate, 317
mutate(), 27, 44, 51, 63, 133, 135, 189, 297,

311
mutate_at(), 232

N
n(), 25, 44
n_distinct(), 86
NA, 28, 93, 94, 146
na.omit(), 96, 293
names(), 19, 23, 130
ncol(), 23
nrow(), 23
NULL, 19

P
page.rank(), 251
pairwise_similarity(), 275
par(), 224
pbinom(), 326, 341
pivot_longer(), 98, 189, 311, 316, 317

pivot_wider(), 42, 43, 51, 63, 98, 133, 189,
296

plot(), 241, 244, 254
pnorm(), 331, 334, 353, 398
position, 260
power.prop.test(), 415
power.t.test(), 416, 417
print(), 13, 17, 147
probs, 77
prop.test(), 402, 403, 406–408
pull(), 26
punif(), 324
purrr package, 11, 340

Q
qnorm(), 353, 373, 388
qqnorm(), 332
qqplot(), 126
qss package, 12, 39, 218
qt(), 388
quantile(), 77, 142, 181

R
range(), 18
rbinom(), 339
RColorBrewer package, 264
read.dta(), 31
read.spss(), 31
read_csv(), 21, 22, 39, 40, 62, 65, 89
read_dta(), 31
readr package, 11
recode(), 312
rename(), 43
rep(), 146
replace_na(), 232
resid(), 171, 182
return(), 20
rgb(), 262, 263
rio package, 31
rmarkdown package, 33
rnorm(), 363
row_number(), 26
rowMeans(), 129
rownames(), 128
rowSums(), 129, 297
rowwise(), 239
runif(), 324, 344

S
sample(), 288, 306, 363, 393
save(), 30
save.image(), 30
scale(), 131, 178, 179, 332
scale_alpha_identity(), 263
scale_color_identity(), 263
scale_color_manual(), 117, 164, 249
scale_fill_discrete(), 98
scale_fill_identity(), 267

458 R Index

scale_shape_manual(), 117, 249
scale_x_continuous, 100
scale_x_continuous(), 117, 169
scale_x_discrete(), 97
scale_y_continuous(), 117, 169
sd(), 80, 235
select(), 24–27
seq(), 18, 19, 77, 160
seq_along(), 147
seq_len(), 340
set.seed(), 227
setwd(), 21
shadow_mark(), 271
shape, 116
sign(), 158
slice, 248
slice(), 24, 25
slice_max(), 226, 248
SnowballC package, 218
source(), 33
spread_predictions(), 207
sqrt(), 10, 17
starts_with(), 317
stat_function(), 348
state_length, 271
stemCompletion(), 224
str_c(), 147
str_replace(), 311, 317
str_replace_all(), 220
str_sub(), 220
str_to_lower(), 265
stringr package, 147, 218, 352
suffix, 176
sum(), 18, 44, 46, 49, 91
summarise(), 29
summarize, 316
summarize(), 29, 49, 51, 52, 63, 77, 80, 92,

105, 240
summarize_at(), 80
summary(), 28, 41, 65, 76, 89, 183, 196, 429,

431
swirl package, xx

T
t.test(), 389, 403, 405, 406
table(), 228
tail(), 40
theme(), 164
theme_classic(), 97, 100, 155

theme_void(), 259
tibble, 21, 23, 24, 39, 40
tibble package, 11
tidy(), 132, 133, 169, 208, 219, 429–431
tidymodels package, 132, 133, 168
tidyr package, 11, 201
tidytext package, 218, 221, 222
tm package, 218
tokenizers package, 220
transition_length, 271
transition_states(), 271
TRUE, 46

U
ungroup(), 91, 232, 294
unique(), 86, 90, 153, 154
unnest_tokens(), 220

V
V(), 252
var(), 80
vars(), 232
VCorpus(), 218
vertex.color, 254
View(), 23

W
weighted.mean(), 316
weightTfIdf(), 226, 228
where(), 297
while, 254
while(), 254, 255
widyr package, 275
wordcloud package, 223
wordcloud(), 223, 224
wordStem(), 220
write.dta(), 32
write_csv(), 31
write_dta(), 32

X
xlab(), 97
xlim(), 126

Y
ylab(), 97
ylim(), 126
ymd(), 153

